HTTPS://GITHUB.COM/FTHPC/CORRELATION COMPRESSIBILITY

STATISTICAL PREDICTION OF LOSSY **COMPRESSION RATIOS FOR 3D SCIENTIFIC DATA**

DAVID KRASOWSKA **Clemson University**

ADVISORS

Julie Bessac Robert Underwood

COLLABORATORS

Jon Calhoun Sheng Di Franck Cappello Arkaprabha Ganguli

19 July, 2022 Lemont, IL

WHY USE COMPRESSION IN HPC?

- HPC applications require lots of storage and memory throughput
- Compression allows for larger problem sizes to be ran while accelerating I/O time
- Checkpoint snapshots of an application's state

OUR PREVIOUS WORK CR estimation for 2D datasets

- Statistical predictors with notions of correlation, entropy and lossyness
 - Truncated SVD
 - Quantized entropy

$$\log(CR) = a + b \times \log(q-ent) + c \times \log\left(\frac{SVD-trunc}{\sigma}\right) + d \times \log(q-ent) \times \log\left(\frac{SVD-trunc}{\sigma}\right) + \epsilon, \quad (1)$$

EXTENSION TO 3D DATASETS

Completed this summer

- Extend statistical predictors to 3D
- Higher order SVD (HOSVD)

Algorithm 1 High-order SVD on tensor X of order N for i = 1, ..., N do $X_{(i)} \leftarrow$ unfolding(X, mode=i) $X_{(i)} \leftarrow U^{(i)}D^{(i)}(V^{(i)})^T$ $A^{(i)} \leftarrow$ left singular vectors $U^{(i)}$ of $X_{(i)}$ end for

• Used the same regression model used for 2D datasets

RESULTS FOR 3D

Comparable results to the 2D method counterpart

Compressor	MPE (median percentage error)	10% Quantile	90% Quantile
SZ2	4.5%	3.2%	5.7%
ZFP	1.7%	1.3%	3.5%
MGARD	0.6%	0.4%	1.3%
Bit Grooming	7.4%	5%	9.3%
TTHRESH	24.8	15.7%	27.7%

CONCLUSIONS

- Ability to predict CRs in 3D remains competitive with our method
- Flexible across compressors, error bounds, and datasets

CURRENT WORK

- Currently working on sampling-based approaches to reduce computational costs
 - Generate training samples from blocks of the data
 - Estimate CR using the samples and our predictors

QUESTIONS?

CONTACT: LINKTR.EE/KRASOW DKRASOW@CLEMSON.EDU

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

