
Are Task-Based Programming 
Models Suitable for Processing in 

Memory (PIM) Clusters? 

David Krasowska
Legion Retreat 12/04/2024



The data movement bottleneck … sucks

2



Compute Centric Architecture

3

Input 
Device

CPU

Control Unit

Arithmetic Logic 
Unit

Memory

Output 
Device



Processing in Memory (PIM)

Lower Latency: Data is processed in/near memory, reducing retrieval time
Efficient Design: Smaller, simpler processors with local memory reduce complexity
High Parallelism: Large number of processors enables simultaneous data processing
Ideal for Data-Intensive Workloads: AI, genomics, databases, HPC

4



Different types of PIM solutions

DRAM DIMM (this talk)
• Speed up CPU computation

High-bandwidth memory (HBM)
• Speed up GPU and FPGA computation 

Compute Express Link (CXL) 
• Large in memory filtering

5



Different types of PIM solutions

DRAM DIMM (this talk)
• Speed up CPU computation

High-bandwidth memory (HBM)
• Speed up GPU and FPGA computation 

Compute Express Link (CXL) 
• Large in memory filtering

6https://samsung.com 

https://samsung.com


New view of the machine

7

Input 
Device

CPU

Control Unit

Arithmetic Logic 
Unit

PIM-Enabled Memory

Output 
Device



● UPMEM PIM DIMM with 128 DPUs.

● Each DPU has 24 threads supporting 
32-bit RISC instructions (64-bit capable).

● Single-socket server supports 2,560 
DPUs (64 per rank) with 256GB 
PIM-DRAM.

https://www.upmem.com 

Hardware configuration 

8

https://www.upmem.com/


https://safari.ethz.ch/ 

What is the UPMEM architecture? 

9

https://safari.ethz.ch/


https://safari.ethz.ch/ 

What is the UPMEM architecture? 

10

https://safari.ethz.ch/


Limitations of the UPMEM Architecture

1) Lack of communication network across processors
2) No hardware floating point unit

11



How do you program with UPMEM?

12



Accelerator Model

DPU Code

Host Code

DPU Code

Memory Transfers 

Kernel Launches

Synchronization

API

Model of UPMEM

13



DPU Code

Host Code

DPU Code

API

Hardware Backend

Simulator Backend

Accelerator Model

Model of UPMEM

14



DPU Code

Host CodeHost Code DPU Clang LLVM 
Target

DPU runtime (stdlib, 
FP-emulation, etc)

Accelerator Model

Model of UPMEM

15



Accelerator Model

DPU Code

Host Code

API

Hardware Backend

Simulator Backend

DPU Clang LLVM 
Target

DPU runtime (stdlib, 
FP-emulation, etc)

Model of UPMEM

16



How well does the Legion task model map onto 
processing in memory architectures?

17



“Achieving high performance and power efficiency 
on future architectures will require programming 
systems capable of reasoning about the structure of 
program data to facilitate efficient placement and 
movement of data”

18
https://legion.stanford.edu/overview/ 

https://legion.stanford.edu/overview/


Legion utilizes large task graphs to minimize 
kernel invocation and communication latencies 

19



Support UPMEM in the Realm backend

Processor::DPU_PROC
• Each DPU is a registered processor in Realm

Memory::DPUMRAMMemory 
• MRAM is registered memory that has affinity to the host RAM

UPMEM provides an asynchronous function callback interface for event 
synchronization (memory transfers and kernel execution)

Mapper interface will allow us to shard the indexspace amongst the DPUs 

20



Current status (as this a work in progress)
The good:
• UPMEM DPUs are controlled by Legion/Realm host code

• Event interface handles completion notifications for forward 
progress within the application (fences etc)

• Launch kernels + transfer data based on Legion dependency graphs
• Ability to use Legion/Realm notions of data on the UPMEM device

The bad:
• Unable to scale past 64 DPUs due to an address mapping bug
• Complex collective communication patterns haven’t been fully tested

• (reductions, all-to-all, etc)
• Larger applications need to be ported to evaluate Legion-PIM 

performance benefits

21



Related work: Simple-PIM

State-of-the-art programming model for UPMEM PIM
Model abstraction supporting any dimension and size of array

• Host code and device code
• Collective communication across devices

Optimizations to the DPU device code 
• Operator strength reductions
• Loop unrolling
• Avoiding boundary checks

22Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, Yuxin Guo and Onur Mutlu, "SimplePIM: A Software Framework for Productive and Efficient In-Memory Processing" , 
International Conference on Parallel Architectures and Compilation Techniques (PACT), 2023.

https://arxiv.org/abs/2310.01893


Best current state-of-the art (Simple-PIM)

23https://github.com/CMU-SAFARI/SimplePIM 

averaged over n=20 trials for DAXBY

https://github.com/CMU-SAFARI/SimplePIM


Legion-PIM (this work)

24https://github.com/PrescienceLab/upmem-legion 

averaged over n=20 trials for DAXBY

https://github.com/PrescienceLab/upmem-legion


Experience

DPU-Clang is not like NVCC
• No ability to link a static library like librealm or liblegion without major engineering

Cannot adequately build libc++ from forked LLVM provided by UPMEM

Larger runtime overhead due to granularity of the processor
• 128 DPU processors per DIMM managed by Realm

Physical non-global address space for the device
• Each DPU has memory from 0x0MB to 0x64MB

25



Future Work

On simple benchmarks, achieving scaling across the full 2560 DPUs
Port more complex benchmarks with high degree of concurrency to compare 
against the prior state-of-the-art
Run multi-node simulator experiments combined with a regression model

• Lack of a multi-node UPMEM PIM cluster

26

Contact: krasow@u.northwestern.edu
https://krasow.dev

mailto:krasow@u.northwestern.edu
https://krasow.dev

