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Why use compression in HPC?

• HPC applications require lots of storage and memory throughput
• Compression allows for larger problem sizes to be ran while 

accelerating I/O time
• Checkpoint snapshots of an application’s state
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Why estimate lossy compression ratios (CRs)?

• Finding the best compressor for the given data
• Accurate estimation enables I/O optimizations
• Compare different compressors for minimum data size
• Predict transfer times for lossy data over network links
• Resource allocation planning

• Next step towards theoretical limit for lossy compressibility
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Our contributions 

1. Ability to accurately predict compression ratio on 3D scientific data

2. Lower prediction errors than previous attempts
• <10% error across many compressors and datasets

3. Flexible across compressors, error bounds, and datasets
• Compressor-free predictors (black-box)

4. Faster than other statistical predictors used in previous models

5. GPU accelerated: 57x speedup compared to CPU implementation
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https://wci.llnl.gov/simulation/computer-codes



Estimating lossless compression ratios

• Entropy: theoretical lower bound limit of average number of 
bits needed to code output of source bitstream

• Optimal lossless compressors equal this limit
• No theoretical quantification of lossy compressibility exists 
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Why is this challenging? 
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LossynessCorrelation Entropy

• Compressors have different methods of data reduction
• Need to capture the different notions of:
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Prior work was either inaccurate or slow
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• Depend on knowledge of a compressor’s design principles
• High error and relied on many internals of SZ [Z. Qin]

• Improved error but still relied on blocksize [D. Tao]

• Rely on trial and error  [R. Underwood]
Method Speed Accuracy 

[R. Underwood] L J
[D. Tao] J L
[Z. Qin] J L
Our Method J J



Our previous work (2D)

• Presented at DRBSD-7 SC’21

• Relied heavily on the variogram
• Extremely slow relative to modern compressors

• No model of CR based on correlation metrics and error bound
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Statistical predictors
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Truncated Singular Value Decomposition (SVD-trunc)
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What is the Higher Order SVD (HOSVD)?
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What is the quantized entropy (q-ent)?
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• Trained on observed CR and statistical predictors 

• Least-square techniques to estimate parameters from observed training datasets

• K-fold cross validation to assess without bias

Our linear regression model 
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Experimental setup for 3D

• 288 3D orbitals from QMCPack were used
• SDRBENCH benchmark suite

• Containing structures of atoms, molecules, and solids

• Leading error bounded lossy compressors used
• SZ, ZFP, MGARD, Bit Grooming, TTHRESH, and more

• Other datasets and results are comparable
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QMCPack compression estimation exhibited low error 

• Predicted CR exhibits low MAPEs (< 7.5%) for SZ2, ZFP, MGARD, and Bit Grooming
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Compressor MAPE (median 
percentage error)

10% 
Quantile

90% 
Quantile

SZ2 4.5% 3.2% 5.7%

ZFP 1.7% 1.3% 3.5%

MGARD 0.6% 0.4% 1.3%

Bit Grooming 7.4% 5% 9.3%



QMCPack compression estimation exhibited low error 

• Predicted CR exhibits low MAPEs (< 7.5%) for SZ2, ZFP, MGARD, and Bit Grooming

• However, TTHRESH produces a higher error
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Compressor MAPE (median 
percentage error)

10% 
Quantile

90% 
Quantile

SZ2 4.5% 3.2% 5.7%

ZFP 1.7% 1.3% 3.5%

MGARD 0.6% 0.4% 1.3%

Bit Grooming 7.4% 5% 9.3%

TTHRESH 24.8% 15.7% 27.7%



Predictions on cross validation set fit well
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GPU acceleration improved performance (57x)

• Average performance of HOSVD and Q-ent on the Baryon density buffer from the NYX dataset
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*NVIDIA A100 GPU scaling with DGX node on the Palmetto Cluster.



Statistical predictor reuse speeds up compressor 
comparisons
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Statistical predictor reuse speeds up compressor 
comparisons
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Our Method

Time used to find best 
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Conclusions
1. Ability to accurately predict CRs for 3D scientific datasets

2. Flexible across compressors, error bounds, and datasets
• Compressor-free statistical predictors 

3. Statistical predictor reuse allows for comparison of different compressors to 
find largest CR

4. Performance speedup
• Different predictors (variogram vs SVD)

• Software methodology (OptZconfig vs regression model)

• Hardware (CPU vs GPU)

5. Next step towards theoretical quantification of lossy compressibility  
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Future work

• Sampling-based approaches to reduce computational costs
• Generate training samples from blocks of 3D tensor data

• Estimate CR using the samples and our predictors

• Training free model for estimation
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