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Why use compression in HPC?

 HPC applications require lots of storage and memory throughput

* Compression allows for larger problem sizes to be ran while
accelerating I/0 time

* Checkpoint snapshots of an application’s state
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Why estimate lossy compression ratios (CRs)?

* Finding the best compressor for the given data

e Accurate estimation enables |/O optimizations
 Compare different compressors for minimum data size
* Predict transfer times for lossy data over network links
e Resource allocation planning

* Next step towards theoretical limit for lossy compressibility
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Our contributions

1. Ability to accurately predict compression ratio on 3D scientific data
2. Lower prediction errors than previous attempts
* <10% error across many compressors and datasets

3. Flexible across compressors, error bounds, and datasets

* Compressor-free predictors (black-box)

4. Faster than other statistical predictors used in previous models

5. GPU accelerated: 57x speedup compared to CPU implementation

https://wci.llnl.gov/simulation/computer-codes
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Estimating lossless compression ratios

* Entropy: theoretical lower bound limit of average number of
bits needed to code output of source bitstream

—2 P(x;) log,P(x;)

X; symbol
e Optimal lossless compressors equal this limit

* No theoretical quantification of lossy compressibility exists
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Why is this challenging?

 Compressors have different methods of data reduction

* Need to capture the different notions of:

Correlation Entropy Lossyness
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Why is this challenging?

 Compressors have different methods of data reduction

* Need to capture the different notions of:

S—

Correlation

Image: a=0.05

SZ 1e-2 abs CR: 37.8 23.7 15.7
SZ 1e-5 abs CR: 5.1 4.9 4.1
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Prior work was either inaccurate or slow

 Depend on knowledge of a compressor’s design principles

* High error and relied on many internals of SZ [Z. Qin]

* Improved error but still relied on blocksize [D. Tao]

Wethod | Speed | Accuracy

* Rely on trial and error [R. Underwood]

[R. Underwood]

[D. Tao]

Our Method
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Our previous work (2D)

* Presented at DRBSD-7 SC’21

* Relied heavily on the variogram

* Extremely slow relative to modern compressors

* No model of CR based on correlation metrics and error bound
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Statistical predictors

Correlation Lossyness
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Truncated Singular Va

ue Decomposition (SVD-trunc)
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What is the Higher Order SVD (HOSVD)?

~ I
Sorted Selected Modes for
— Modes 99% Variance
Reconstruction

3D tensor Unfold Singular Values
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What is the quantized entropy (g-ent)?
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Our linear regression model

log(CR) = a+ b x log(qg-ent) 4+ ¢ X log (

+d X log(qg-ent) X log (SVD:runc) + ¢,

SVD-trunc
o

* Trained on observed CR and statistical predictors
* Least-square techniques to estimate parameters from observed training datasets

e K-fold cross validation to assess without bias
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Experimental setup for 3D

e 288 3D orbitals from QMCPack were used
e SDRBENCH benchmark suite

e Containing structures of atoms, molecules, and solids

* Leading error bounded lossy compressors used
 SZ,ZFP, MGARD, Bit Grooming, TTHRESH, and more

* Other datasets and results are comparable
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QMCPack compression estimation exhibited low error

Compressor | MAPE (median 10% 90%
percentage error) Quantile Quantile
SZ2

4.5% 3.2% 5.7%
ZFP 1.7% 1.3% 3.5%
MGARD 0.6% 0.4% 1.3%
Bit Grooming 7.4% 5% 9.3%

* Predicted CR exhibits low MAPEs (< 7.5%) for SZ2, ZFP, MGARD, and Bit Grooming
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QMCPack compression estimation exhibited low error

Compressor | MAPE (median 10% 90%
percentage error) Quantile Quantile
SZ2

4.5% 3.2% 5.7%
ZFP 1.7% 1.3% 3.5%
MGARD 0.6% 0.4% 1.3%
Bit Grooming 7.4% 5% 9.3%
TTHRESH 24.8% 15.7% 27.7%

* Predicted CR exhibits low MAPEs (< 7.5%) for SZ2, ZFP, MGARD, and Bit Grooming

* However, TTHRESH produces a higher error
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Predictions on cross validation set fit well

Predicted CR
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GPU acceleration improved performance (57x)

HOSVD Speedup Qentropy Speedup
70 70

60
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40 40
30 30
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0 0
1GPU 4GPU 0 42.0s

1GPU 4GPU
41.046792 57.2731507

Average Speedup (CPU/GPU)
Average Speedup (CPU/GPU)

m HOSVD 1 40.60265595 57.44241501 M gentropy

* Average performance of HOSVD and O-ent on the Baryon density buffer from the NYX dataset
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Statistical predictor reuse speeds up compressor
comparisons
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Statistical predictor reuse speeds up compressor
comparisons
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Statistical predictor reuse speeds up compressor
comparisons
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Statistical predictor reuse speeds up compressor
comparisons
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Conclusions
1. Ability to accurately predict CRs for 3D scientific datasets

2. Flexible across compressors, error bounds, and datasets
 Compressor-free statistical predictors

3. Statistical predictor reuse allows for comparison of different compressors to
find largest CR

4. Performance speedup
. Different predictors (variogram vs SVD)

. Software methodology (OptZconfig vs regression model)

. Hardware (CPU vs GPU)

5. Next step towards theoretical quantification of lossy compressibility

FE C22 | Dallas, TX | hpc accelerates. 11/24/22




Future work

* Sampling-based approaches to reduce computational costs
* Generate training samples from blocks of 3D tensor data

e Estimate CR using the samples and our predictors

* Training free model for estimation
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