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Motivation

● Scientific research increasingly uses error-bounded lossy compressors to achieve 
greater compression ratios in relation to lossless compressor

● Entropy[1]:  theoretical limit on compressibility of data using lossless compression

○ There is no current limit for lossy compression

● Establishing the limit for lossy compression allows for the maximum efficiency for 
storing large scientific datasets
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[1] C. E. Shannon, “A mathematical theory of 
communication,”Bell SystemTechnical Journal,  vol.  27,  
no.  3,  pp.  379–423,  Jul.  1948.  



Goal

1. Explore statistical methods to characterize the correlation structures of the data

2. Explore their relationships, through functional models, to compression ratios

● These models will form the first step into evaluating the theoretical limits of lossy 
compressibility used to eventually predict compression performance
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In this presentation:

● To characterize compressibility, we use the compression ratio

● Relationship between compression ratios and statistics summarizing the 
correlation structure of the data

This is a first step towards evaluating the theoretical limits
of lossy compressibility used to eventually predict compression
performance and adapt compressors to correlation structures 
present in the data
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Background: Compressors 
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SZ

● Scans block by block, with a block size of 16 ×16 for 2D data

● Predicting the data in each block uses:

○ Lorenzo predictor which the neighboring points to estimate the value at the current position

○ Regression predictor which fits a hyper-plane through the block and uses the fitted hyper-plane to 
interpolate the values within each block

● Passed first through a Huffman encoding, then passed to Zstd lossless compressor 
to exploit patterns in the quantized sequence

● Cannot exploit global correlation structures easily

○ Does not observe values outside of its block
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ZFP
● Partitions 2D data into 4×4 block size 

● Compression principle based on near orthogonal transforms 

○ Converts each block of floating point data into a common fixed point representation

○ Performs the near orthogonal transform

○ Applies an embedded encoding that orders bits from most significant to least significant

○ Truncates to achieve a desired tolerance. 

● Cannot exploit global correlation structures easily

○ Does not observe values outside of its block
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Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 1245–1250, Sep. 2006. 
[Online]. Available: https://doi.org/10.1109/tvcg.2006.143



MGARD

● Decomposes data into multi-level coefficients which represent: 

○ Recursively defined sub-regions until block is within error bound

● Multi-level coefficients are quantized and compressed with either Zlib (older 
versions) or Zstd (newest unreleased version). 

● Can exploit global correlation structures easily

○ Multi-level coefficients can represent regions of differing sizes
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Background: Global Variogram
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● Range (a) as it corresponds to the distance (h) where the variogram (γ) plateaus

● Indicates the distance which the spatial correlation among grid-points vanishes

● The larger the range is the stronger the correlation is across grid-points

Representation of the variogram
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Formulation

● Valid in the general context of datasets that are accompanied by coordinates or 
for which coordinates could be attributed that represent a notion of proximity 

○ Structured meshes, unstructured meshes or even irregularly sampled 
spatial points. 
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Field Description

z field of interest

xi and xj grid-point coordinates / indexes

N(h) number of points at distance h from 
each other



Background: Correlation Structures 
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● Statistical tools exist beyond the variogram to quantify and extract complex 
correlation structures of datasets

● Identifying multiscale components of scientific datasets mostly relies on 
eigen or a basis-function decompositions 
○ Singular value decomposition (SVD) or wavelet decomposition [1, 2]

● Developing methods to extract spatial and spatiotemporal heterogeneity is 
still an on-going research 
○ Due to the complexity of correlations and dependencies in data
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Related Work
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● Little attention afforded to the topic of lossy compressiblity

● [1] investigated the determination of thresholds for singular value 
decomposition of large matrices based on some optimality loss criteria

● [2] identified several factors that affect compression ratios for SZ and ZFP
○ Complex interplay between compressor design, data features and compression performance
○ Compression ratios are estimated in a block-based sampling approach using Shannon 

entropy [3] of the sampled quantized blocks to investigate SZ's behavior
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Methodology: Datasets
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Gaussian 2D Generated Datasets
● 2D Gaussian fields with a controllable correlation structure following a 

squared-exponential correlation model
● We consider these fields as ‘ideal’ as the correlation range is known and 

varied to create multiple correlated fields
● 1028x1028 data dimensions
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Gaussian 2D Probability Distribution 

𝑓 𝑧 𝑥! , … , 𝑧 𝑥" =
exp −12 𝑧 − µ TΣ 𝑥 #! 𝑧 − µ

2π " Σ 𝑥
● 𝑧 = 𝑧 𝑥! , … , 𝑧 𝑥" ∈ 𝑅"

○ Gaussian fields z over a grid defined by indexes xi
● μ= 0 ∈𝑅+
● Σ(𝑥𝑖, 𝑥𝑗) = σ2 exp( −|𝑥𝑖 − 𝑥𝑗|2/𝑎2 )

○ squared-exponential correlation
○ σ# = 1
○ a is the correlation range
○ 𝑥𝑖 are spatial grid-points of the 2D field images

18



Miranda1

● Designed for hydrodynamical large turbulence simulations
● More complex than Gaussian fields due to multiple correlation ranges and 

complex dependencies
● 256x384x384 original data dimensions

○ Split along the first dimension into 384x384 slices
● velocityx was used for this paper
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Methodology: Compressors and 
Software
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• All experiments are run on Clemson's Palmetto cluster using a node with two 32 core Intel(R) 
Xeon(R) Gold 6148 CPU @ 2.40GHz and 384 GB of RAM. 

• The OS is Linux CentOS 8 with compiler GCC 8.4.1. 

Software Version Purpose

SZ @2.1.11.1

lossy compressorZFP @0.5.5

MGARD @0.1.0

gstat @2.0-7 obtain variogram range

numpy @1.21.1 polyfit function to graph 
the curves

Libpressio @0.70.0 compress and measure 
the data
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Methodology: Compression Statistics 
and Statistical Method

23



Compression Statistics: Compression ratio

● Impacted by: error bound, compressor used, and correlation structures
within the data

● Comparable between different compressors and error bounds

● Computed on the studied datasets for different compressors and error bounds 
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Variogram Study

● Compute empirical variogram of each 2D data-slice from the datasets based 
on the Euclidean distance between grid-points. 

● Estimate variogram ranges on the entire 2D field in order to assess the overall 
correlation structure of the fields
○ Corresponding range, a, is estimated
○ Referenced as the estimated global variogram range
○ Insufficient to characterize local heterogeneity 

● Characterize local heterogeneity and spatial diversity 
○ Compute the variogram ranges in windows of a given size that cover the 

entire 2D field in a tiled fashion [1].
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Methodology Summary

Compression ratio is investigated as function of a 
measure of several correlation statistics of data 
computed through the variogram range
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Experimental Results: 
Compressibility and Global 
Correlation
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2D Gaussian fields with single correlation range 



Velocityx Miranda dataset
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● Slope of each trendline for each compressor and bound is ~0 
● Global variogram range is limited by multi-correlations

○ Indicates the need for local correlation statistical measurements
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2D Gaussian fields with multi correlation range 



Experimental Results: 
Compressibility and local correlation

31



32

● Slope of each trendline for each compressor and bound is >0
○ Characterizes spatial local heterogeneity 

2D Gaussian fields with multi correlation range 



Conclusions and Future Work
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Conclusions

● Our work represent a first step toward establishing the theoretical and 
compressor-free limit on lossy compressibility 

● Estimated global and local variogram ranges can explain compression ratio in 
a logarithmic fashion for some compressors and given error bounds
○ SZ and ZFP seems to utilize the global and local spatial correlation ranges 
○ MGARD seems less sensitive

● Heterogeneous (non-stationary) and multiscale correlations in the data may 
be mis-represented by the global spatial variogram
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Future work

1. Explore more complex dependent variables (local correlation combined with 
multiscale statistics based on decomposition) as candidate predictors

2. Create more complex synthetic multiscale 2D Gaussian fields
3. Test the robustness of the proposed statistics and the method on other datasets
4. Create a model of compression ratio based on correlation metrics and error 

bound. 
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Questions?

● Email: dkrasow@clemson.edu
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